Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74.031
1.
Nat Commun ; 15(1): 3113, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600097

Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.


Neurons , Proteomics , Mice , Animals , Humans , Neurons/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Autophagy/physiology , Homeostasis
2.
J Diabetes ; 16(5): e13544, 2024 May.
Article En | MEDLINE | ID: mdl-38664885

As a sensor, glucokinase (GK) controls glucose homeostasis, which progressively declines in patients with diabetes. GK maintains the equilibrium of glucose levels and regulates the homeostatic system set points. Endocrine and hepatic cells can both respond to glucose cooperatively when GK is activated. GK has been under study as a therapeutic target for decades due to the possibility that cellular GK expression and function can be recovered, hence restoring glucose homeostasis in patients with type 2 diabetes. Five therapeutic compounds targeting GK are being investigated globally at the moment. They all have distinctive molecular structures and have been clinically shown to have strong antihyperglycemia effects. The mechanics, classification, and clinical development of GK activators are illustrated in this review. With the recent approval and marketing of the first GK activator (GKA), dorzagliatin, GKA's critical role in treating glucose homeostasis disorder and its long-term benefits in diabetes will eventually become clear.


Diabetes Mellitus, Type 2 , Glucokinase , Homeostasis , Humans , Glucokinase/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Enzyme Activators/therapeutic use , Enzyme Activators/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Blood Glucose/metabolism , Animals , Glucose/metabolism
3.
Nat Commun ; 15(1): 3377, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643150

Zinc-alpha2-glycoprotein (AZGP1) has been implicated in peripheral metabolism; however, its role in regulating energy metabolism in the brain, particularly in POMC neurons, remains unknown. Here, we show that AZGP1 in POMC neurons plays a crucial role in controlling whole-body metabolism. POMC neuron-specific overexpression of Azgp1 under high-fat diet conditions reduces energy intake, raises energy expenditure, elevates peripheral tissue leptin and insulin sensitivity, alleviates liver steatosis, and promotes adipose tissue browning. Conversely, mice with inducible deletion of Azgp1 in POMC neurons exhibit the opposite metabolic phenotypes, showing increased susceptibility to diet-induced obesity. Notably, an increase in AZGP1 signaling in the hypothalamus elevates STAT3 phosphorylation and increases POMC neuron excitability. Mechanistically, AZGP1 enhances leptin-JAK2-STAT3 signaling by interacting with acylglycerol kinase (AGK) to block its ubiquitination degradation. Collectively, these results suggest that AZGP1 plays a crucial role in regulating energy homeostasis and glucose/lipid metabolism by acting on hypothalamic POMC neurons.


Leptin , Pro-Opiomelanocortin , Mice , Animals , Leptin/metabolism , Phosphorylation , Pro-Opiomelanocortin/metabolism , Hypothalamus/metabolism , Homeostasis/physiology , Energy Metabolism/physiology , Neurons/metabolism
4.
Mol Nutr Food Res ; 68(8): e2300643, 2024 Apr.
Article En | MEDLINE | ID: mdl-38600887

SCOPE: Polyphenols are the major active substances in red jujube fruit, and their anti-inflammatory and antioxidant activities suggest their potential utility in the prevention of ulcerative colitis (UC). METHODS AND RESULTS: In this study, the effect of polyphenol extracts from red jujube (Ziziphus jujuba Mill. "Junzao") (PERJ) on the dextron sulfate sodium (DSS)-induced UC mice is investigated. The result shows that PERJ effectively improves clinical symptoms, including food and water intake, the disease activity insex (DAI) and spleen index, and routine blood levels, and alleviates the shortening of the colon, in mice with DSS-induced UC. Meanwhile, PERJ remarkably decreases the expression of proinflammatory factors. Moreover, PERJ repairs intestinal barrier damage by increasing the expression level of mucin 2 and mucin 3, and the result is also confirmed in the histological assessment. Besides, the expression levels of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and mitogen-activated protein kinase cascade (MAPKs) signaling pathway-related proteins are inhibited by the PERJ administration. Finally, 16S rRNA sequencing analyses reveal that PERJ reverses intestinal microbiota dysbiosis by enhancing the abundance of Firmicutes and decreasing that of Proteobacteria and Bacteroidetes. CONCLUSION: PERJ probably inhibits the development of UC by suppressing the NLRP3 and MAPKs signaling pathways and regulating gut microbiota homeostasis, and can be considered as a potential resource for preventing UC.


Colitis, Ulcerative , Gastrointestinal Microbiome , Homeostasis , MAP Kinase Signaling System , NLR Family, Pyrin Domain-Containing 3 Protein , Plant Extracts , Polyphenols , Ziziphus , Animals , Ziziphus/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Polyphenols/pharmacology , Plant Extracts/pharmacology , Male , MAP Kinase Signaling System/drug effects , Homeostasis/drug effects , Mice , Mice, Inbred C57BL , Dextran Sulfate , Colon/drug effects , Colon/metabolism , Colon/pathology
5.
Cell Rep ; 43(4): 114109, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38613782

The gut must perform a dual role of protecting the host against toxins and pathogens while harboring mutualistic microbiota. Previous studies suggested that the NADPH oxidase Duox contributes to intestinal homeostasis in Drosophila by producing reactive oxygen species (ROS) in the gut that stimulate epithelial renewal. We find instead that the ROS generated by Duox in the Malpighian tubules leads to the production of Upd3, which enters the gut and stimulates stem cell proliferation. We describe in Drosophila the existence of a countercurrent flow system, which pushes tubule-derived Upd3 to the anterior part of the gut and stimulates epithelial renewal at a distance. Thus, our paper clarifies the role of Duox in gut homeostasis and describes the existence of retrograde fluid flow in the gut, collectively revealing a fascinating example of inter-organ communication.


Drosophila Proteins , Drosophila melanogaster , Intestinal Mucosa , Malpighian Tubules , Reactive Oxygen Species , Animals , Malpighian Tubules/metabolism , Drosophila Proteins/metabolism , Reactive Oxygen Species/metabolism , Intestinal Mucosa/metabolism , Drosophila melanogaster/metabolism , NADPH Oxidases/metabolism , Dual Oxidases/metabolism , Dual Oxidases/genetics , Cell Proliferation , Homeostasis , Drosophila/metabolism
6.
Cell Rep ; 43(4): 114120, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38625796

Border-associated macrophages (BAMs) are tissue-resident macrophages that reside at the border of the central nervous system (CNS). Since BAMs originate from yolk sac progenitors that do not persist after birth, the means by which this population of cells is maintained is not well understood. Using two-photon microscopy and multiple lineage-tracing strategies, we determine that CCR2+ monocytes are significant contributors to BAM populations following disruptions of CNS homeostasis in adult mice. After BAM depletion, while the residual BAMs possess partial self-repopulation capability, the CCR2+ monocytes are a critical source of the repopulated BAMs. In addition, we demonstrate the existence of CCR2+ monocyte-derived long-lived BAMs in a brain compression model and in a sepsis model after the initial disruption of homeostasis. Our study reveals that the short-lived CCR2+ monocytes transform into long-lived BAM-like cells at the CNS border and subsequently contribute to BAM populations.


Brain , Macrophages , Monocytes , Receptors, CCR2 , Animals , Receptors, CCR2/metabolism , Monocytes/metabolism , Macrophages/metabolism , Mice , Brain/pathology , Brain/metabolism , Mice, Inbred C57BL , Homeostasis
7.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38652117

Assembly of macromolecular complexes at correct cellular sites is crucial for cell function. Nuclear pore complexes (NPCs) are large cylindrical assemblies with eightfold rotational symmetry, built through hierarchical binding of nucleoporins (Nups) forming distinct subcomplexes. Here, we uncover a role of ubiquitin-associated protein 2-like (UBAP2L) in the assembly and stability of properly organized and functional NPCs at the intact nuclear envelope (NE) in human cells. UBAP2L localizes to the nuclear pores and facilitates the formation of the Y-complex, an essential scaffold component of the NPC, and its localization to the NE. UBAP2L promotes the interaction of the Y-complex with POM121 and Nup153, the critical upstream factors in a well-defined sequential order of Nups assembly onto NE during interphase. Timely localization of the cytoplasmic Nup transport factor fragile X-related protein 1 (FXR1) to the NE and its interaction with the Y-complex are likewise dependent on UBAP2L. Thus, this NPC biogenesis mechanism integrates the cytoplasmic and the nuclear NPC assembly signals and ensures efficient nuclear transport, adaptation to nutrient stress, and cellular proliferative capacity, highlighting the importance of NPC homeostasis at the intact NE.


Homeostasis , Membrane Glycoproteins , Nuclear Envelope , Nuclear Pore Complex Proteins , Nuclear Pore , Humans , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore/metabolism , Nuclear Pore/genetics , Nuclear Envelope/metabolism , HeLa Cells , Active Transport, Cell Nucleus
8.
Cells ; 13(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38667304

Elevated levels of iron occur in both cortical and subcortical regions of the CNS in patients with Alzheimer's disease. This accumulation is present early in the disease process as well as in more advanced stages. The factors potentially accounting for this increase are numerous, including: (1) Cells increase their uptake of iron and reduce their export of iron, as iron becomes sequestered (trapped within the lysosome, bound to amyloid ß or tau, etc.); (2) metabolic disturbances, such as insulin resistance and mitochondrial dysfunction, disrupt cellular iron homeostasis; (3) inflammation, glutamate excitotoxicity, or other pathological disturbances (loss of neuronal interconnections, soluble amyloid ß, etc.) trigger cells to acquire iron; and (4) following neurodegeneration, iron becomes trapped within microglia. Some of these mechanisms are also present in other neurological disorders and can also begin early in the disease course, indicating that iron accumulation is a relatively common event in neurological conditions. In response to pathogenic processes, the directed cellular efforts that contribute to iron buildup reflect the importance of correcting a functional iron deficiency to support essential biochemical processes. In other words, cells prioritize correcting an insufficiency of available iron while tolerating deposited iron. An analysis of the mechanisms accounting for iron accumulation in Alzheimer's disease, and in other relevant neurological conditions, is put forward.


Alzheimer Disease , Central Nervous System , Iron , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Iron/metabolism , Central Nervous System/metabolism , Central Nervous System/pathology , Animals , Homeostasis
9.
mSphere ; 9(4): e0006124, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38564709

Mycobacterium tuberculosis (Mtb), the pathogenic bacterium that causes tuberculosis, has evolved sophisticated defense mechanisms to counteract the cytotoxicity of reactive oxygen species (ROS) generated within host macrophages during infection. The melH gene in Mtb and Mycobacterium marinum (Mm) plays a crucial role in defense mechanisms against ROS generated during infection. We demonstrate that melH encodes an epoxide hydrolase and contributes to ROS detoxification. Deletion of melH in Mm resulted in a mutant with increased sensitivity to oxidative stress, increased accumulation of aldehyde species, and decreased production of mycothiol and ergothioneine. This heightened vulnerability is attributed to the increased expression of whiB3, a universal stress sensor. The absence of melH also resulted in reduced intracellular levels of NAD+, NADH, and ATP. Bacterial growth was impaired, even in the absence of external stressors, and the impairment was carbon source dependent. Initial MelH substrate specificity studies demonstrate a preference for epoxides with a single aromatic substituent. Taken together, these results highlight the role of melH in mycobacterial bioenergetic metabolism and provide new insights into the complex interplay between redox homeostasis and generation of reactive aldehyde species in mycobacteria. IMPORTANCE: This study unveils the pivotal role played by the melH gene in Mycobacterium tuberculosis and in Mycobacterium marinum in combatting the detrimental impact of oxidative conditions during infection. This investigation revealed notable alterations in the level of cytokinin-associated aldehyde, para-hydroxybenzaldehyde, as well as the redox buffer ergothioneine, upon deletion of melH. Moreover, changes in crucial cofactors responsible for electron transfer highlighted melH's crucial function in maintaining a delicate equilibrium of redox and bioenergetic processes. MelH prefers epoxide small substrates with a phenyl substituted substrate. These findings collectively emphasize the potential of melH as an attractive target for the development of novel antitubercular therapies that sensitize mycobacteria to host stress, offering new avenues for combating tuberculosis.


Bacterial Proteins , Cysteine , Energy Metabolism , Glycopeptides , Homeostasis , Mycobacterium tuberculosis , Oxidation-Reduction , Oxidative Stress , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Reactive Oxygen Species/metabolism , Antitubercular Agents/pharmacology , Ergothioneine/metabolism , Inositol/metabolism , Mycobacterium marinum/drug effects , Mycobacterium marinum/genetics , Mycobacterium marinum/metabolism , Gene Deletion
10.
Proc Natl Acad Sci U S A ; 121(16): e2315541121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38598341

Ferroptosis is an iron-dependent type of regulated cell death resulting from extensive lipid peroxidation and plays a critical role in various physiological and pathological processes. However, the regulatory mechanisms for ferroptosis sensitivity remain incompletely understood. Here, we report that homozygous deletion of Usp8 (ubiquitin-specific protease 8) in intestinal epithelial cells (IECs) leads to architectural changes in the colonic epithelium and shortens mouse lifespan accompanied by increased IEC death and signs of lipid peroxidation. However, mice with heterozygous deletion of Usp8 in IECs display normal phenotype and become resistant to azoxymethane/dextran sodium sulfate-induced colorectal tumorigenesis. Mechanistically, USP8 interacts with and deubiquitinates glutathione peroxidase 4 (GPX4), leading to GPX4 stabilization. Thus, USP8 inhibition destabilizes GPX4 and sensitizes cancer cells to ferroptosis in vitro. Notably, USP8 inhibition in combination with ferroptosis inducers retards tumor growth and enhances CD8+ T cell infiltration, which potentiates tumor response to anti-PD-1 immunotherapy in vivo. These findings uncover that USP8 counteracts ferroptosis by stabilizing GPX4 and highlight targeting USP8 as a potential therapeutic strategy to boost ferroptosis for enhancing cancer immunotherapy.


Ferroptosis , Neoplasms , Mice , Animals , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Ferroptosis/genetics , Homozygote , Sequence Deletion , Lipid Peroxidation , Homeostasis , Neoplasms/genetics , Neoplasms/therapy , Immunotherapy
11.
Microbiol Res ; 283: 127707, 2024 Jun.
Article En | MEDLINE | ID: mdl-38582011

Salinity stress badly restricts the growth, yield and quality of vegetable crops. Plant growth-promoting rhizobacteria (PGPR) is a friendly and effective mean to enhance plant growth and salt tolerance. However, information on the regulatory mechanism of PGPR on vegetable crops in response to salt stress is still incomplete. Here, we screened a novel salt-tolerant PGPR strain Pseudomonas aeruginosa HG28-5 by evaluating the tomatoes growth performance, chlorophyll fluorescence index, and relative electrolyte leakage (REL) under normal and salinity conditions. Results showed that HG28-5 colonization improved seedling growth parameters by increasing the plant height (23.7%), stem diameter (14.6%), fresh and dry weight in the shoot (60.3%, 91.1%) and root (70.1%, 92.5%), compared to salt-stressed plants without colonization. Likewise, HG28-5 increased levels of maximum photochemical efficiency of PSII (Fv/Fm) (99.3%), the antioxidant enzyme activities as superoxide dismutase (SOD, 85.5%), peroxidase (POD, 35.2%), catalase (CAT, 20.6%), and reduced the REL (48.2%), MDA content (41.3%) and ROS accumulation in leaves of WT tomatoes under salt stress in comparison with the plants treated with NaCl alone. Importantly, Na+ content of HG28-5 colonized salt-stressed WT plants were decreased by15.5% in the leaves and 26.6% in the roots in the corresponding non-colonized salt-stressed plants, which may be attributed to the higher K+ concentration and SOS1, SOS2, HKT1;2, NHX1 transcript levels in leaves of colonized plants under saline condition. Interestingly, increased abscisic acid (ABA) content and upregulation of ABA pathway genes (ABA synthesis-related genes NCED1, NCED2, NCED4, NECD6 and signal genes ABF4, ABI5, and AREB) were observed in HG28-5 inoculated salt-stressed WT plants. ABA-deficient mutant (not) with NCED1 deficiency abolishes the effect of HG28-5 on alleviating salt stress in tomato, as exhibited by the substantial rise of REL and ROS accumulation and sharp drop of Fv/Fm in the leaves of not mutant plants. Notably, HG28-5 colonization enhances tomatoes fruit yield by 54.9% and 52.4% under normal and saline water irrigation, respectively. Overall, our study shows that HG28-5 colonization can significantly enhance salt tolerance and improved fruit yield by a variety of plant protection mechanism, including reducing oxidative stress, regulating plant growth, Na+/K+ homeostasis and ABA signaling pathways in tomato. The findings not only deepen our understanding of PGPR regulation plant growth and salt tolerance but also allow us to apply HG28-5 as a microbial fertilizer for agricultural production in high-salinity areas.


Alphaproteobacteria , Solanum lycopersicum , Pseudomonas aeruginosa/metabolism , Salt Tolerance , Reactive Oxygen Species , Homeostasis , Abscisic Acid/metabolism , Antioxidants , Signal Transduction
12.
Methods Mol Biol ; 2782: 1-24, 2024.
Article En | MEDLINE | ID: mdl-38622389

All living organisms must maintain homeostasis to survive, reproduce, and pass their traits on to the next generation. If homeostasis is not maintained, it can result in various diseases and ultimately lead to death. Physiologists have coined the term "homeostasis" to describe this process. With the emergence of immunology as a separate branch of medicine, the concept of immune homeostasis has been introduced. Maintaining immune homeostasis is crucial to support overall homeostasis through different immunological and non-immunological routes. Any changes in the immune system can lead to chronic inflammatory or autoimmune diseases, immunodeficiency diseases, frequent infections, and cancers. Ongoing scientific advances are exploring new avenues in immunology and immune homeostasis maintenance. This chapter introduces the concept of immune homeostasis and its maintenance through different mechanisms.


Autoimmune Diseases , Immune System , Humans , Inflammation , Homeostasis
13.
Methods Mol Biol ; 2782: 65-80, 2024.
Article En | MEDLINE | ID: mdl-38622392

Maintaining immune homeostasis is instrumental for host health. Immune cells, such as T cells, are instrumental for the eradication of pathogenic bacteria, fungi and viruses. Furthermore, T cells also play a major role in the fight against cancer. Through the formation of immunological memory, a pool of antigen-experienced T cells remains in the body to rapidly protect the host upon reinfection or retransformation. In order to perform their protective function, T cells produce cytolytic molecules, such as granzymes and perforin, and cytokines such as interferon γ and tumor necrosis factor α. Recently, it has become evident that posttranscriptional regulatory events dictate the kinetics and magnitude of cytokine production by murine and human CD8+ T cells. Here, the recent literature regarding the role posttranscriptional regulation plays in maintaining immune homeostasis of antigen-experienced CD8+ T cells is reviewed.


CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Humans , Animals , Mice , Pore Forming Cytotoxic Proteins , Cytokines , Perforin , Granzymes , Homeostasis
14.
Methods Mol Biol ; 2782: 25-37, 2024.
Article En | MEDLINE | ID: mdl-38622390

Atherosclerosis remains the leading cause of coronary heart disease (CHD) with enormous health and societal tolls. Traditional drug development approaches have been focused on small molecule-based compounds that aim to lower plasma lipids and reduce systemic inflammation, two primary causes of atherosclerosis. However, despite the widely available lipid-lowering and anti-inflammatory small compounds and biologic agents, CHD prevalence still remains high. Based on recent advances revealing disrupted immune homeostasis during atherosclerosis pathogenesis, novel strategies aimed at rejuvenating immune homeostasis with engineered immune leukocytes are being developed. This chapter aims to assess basic and translational efforts on these emerging strategies for the effective development of atherosclerosis treatment, as well as key challenges in this important translational field.


Atherosclerosis , Humans , Atherosclerosis/drug therapy , Atherosclerosis/etiology , Inflammation/pathology , Anti-Inflammatory Agents/therapeutic use , Homeostasis
15.
Methods Mol Biol ; 2782: 39-63, 2024.
Article En | MEDLINE | ID: mdl-38622391

T cells are a heterogeneous group of cells that can be classified into different subtypes according to different classification methods. The body's immune system has a highly complex and effective regulatory network that allows for the relative stability of immune system function. Maintaining proper T cell homeostasis is essential for promoting protective immunity and limiting autoimmunity and tumor formation. Among the T cell family members, more and more T cell subsets have gradually been characterized. In this chapter, we summarize the functions of some key T cell subsets and their impact on immune homeostasis.


Neoplasms , T-Lymphocytes, Regulatory , Humans , T-Lymphocyte Subsets , Autoimmunity , Homeostasis
16.
Semin Cell Dev Biol ; 161-162: 42-53, 2024.
Article En | MEDLINE | ID: mdl-38608498

Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.


Lymphocytes , Mitochondria , Animals , Mitochondria/metabolism , Lymphocytes/metabolism , Adaptive Immunity , Signal Transduction , Homeostasis , Mammals
17.
Drug Metab Dispos ; 52(5): 408-421, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38575184

Metastasis is the most common pathway of cancer death. The lack of effective predictors of breast cancer metastasis is a pressing issue in clinical practice. Therefore, exploring the mechanism of breast cancer metastasis to uncover reliable predictors is very important for the clinical treatment of breast cancer patients. In this study, tandem mass tag quantitative proteomics technology was used to detect protein content in primary breast tumor tissue samples from patients with metastatic and nonmetastatic breast cancer at diagnosis. We found that the high expression of yin-yang 1(YY1) is strongly associated with poor prognosis in high-grade breast cancer. YY1 expression was detected in both clinical tumor tissue samples and tumor tissue samples from mammary-specific polyomavirus middle T antigen overexpression mouse model mice. We demonstrated that upregulation of YY1 expression was closely associated with breast cancer metastasis and that high YY1 expression could promote the migratory invasive ability of breast cancer cells. Mechanistically, YY1 directly binds to the UGT2B7 mRNA initiation sequence ATTCAT, thereby transcriptionally regulating the inhibition of UGT2B7 expression. UGT2B7 can regulate the development of breast cancer by regulating estrogen homeostasis in the breast, and the abnormal accumulation of estrogen, especially 4-OHE2, promotes the migration and invasion of breast cancer cells, ultimately causing the development of breast cancer metastasis. In conclusion, YY1 can regulate the UGT2B7-estrogen metabolic axis and induce disturbances in estrogen metabolism in breast tumors, ultimately leading to breast cancer metastasis. Disturbances in estrogen metabolism in the breast tissue may be an important risk factor for breast tumor progression and metastasis SIGNIFICANCE STATEMENT: In this study, we propose for the first time a regulatory relationship between YY1 and the UGT2B7/estrogen metabolism axis and explore the molecular mechanism. Our study shows that the YY1/UGT2B7/estrogen axis plays an important role in the development and metastasis of breast cancer. This study further elucidates the potential mechanisms of YY1-mediated breast cancer metastasis and the possibility and promise of YY1 as a predictor of cancer metastasis.


Breast Neoplasms , Breast , Humans , Animals , Mice , Female , Cell Line, Tumor , Breast/metabolism , Breast Neoplasms/metabolism , Estrogens , Homeostasis , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glucuronosyltransferase/metabolism , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
18.
J Agric Food Chem ; 72(15): 8632-8649, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38577880

Our previous studies found that Sea Buckthorn polyphenols (SBP) extract inhibits fatty acid synthase (FAS) in vitro. Thus, we continued to explore possible effects and underlying mechanisms of SBP on complicated metabolic disorders in long-term high-fat-diet (HFD)-fed mice. To reveal that, an integrated approach was developed in this study. Targeted quantitative lipidomics with a total of 904 unique lipids mapping contributes to profiling the comprehensive features of disarranged hepatic lipid homeostasis and discovering a set of newfound lipid-based biomarkers to predict the occurrence and indicate the progression of metabolic disorders beyond current indicators. On the other hand, technologies of intermolecular interactions characterization, especially surface plasmon resonance (SPR) assay, contribute to recognizing targeted bioactive constituents present in SBP. Our findings highlight hepatic lipid homeostasis maintenance and constituent-FAS enzyme interactions, to provide new insights that SBP as a functional food alleviates HFD-induced metabolic disorders in mice via reprograming hepatic lipid homeostasis caused by targeting FAS, owing to four polyphenols directly interacting with FAS and cinaroside binding to FAS with good affinity.


Hippophae , Metabolic Diseases , Mice , Animals , Polyphenols/metabolism , Liver/metabolism , Diet, High-Fat/adverse effects , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Lipids/pharmacology , Metabolic Diseases/metabolism , Homeostasis , Mice, Inbred C57BL , Lipid Metabolism
19.
Cancer Discov ; 14(4): 658-662, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38571436

SUMMARY: Pathogenic shifts in the gut microbiota are part of the "ecological" alterations that accompany tumor progression and compromise immunosurveillance. The future management of health and disease including cancer will rely on the diagnosis of such shifts and their therapeutic correction by general or personalized strategies, hence restoring metaorganismal homeostasis.


Gastrointestinal Microbiome , Neoplasms , Humans , Homeostasis
20.
FASEB J ; 38(7): e23600, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38572599

Odontoblast differentiation depends on the orderly recruitment of transcriptional factors (TFs) in the transcriptional regulatory network. The depletion of crucial TFs disturbs dynamic alteration of the chromatin landscape and gene expression profile, leading to developmental defects. Our previous studies have revealed that the basic leucine zipper (bZIP) TF family is crucial in odontoblastic differentiation, but the function of bZIP TF family member XBP1 is still unknown. Here, we showed the stage-specific expression patterns of the spliced form Xbp1s during tooth development. Elevated Xbp1 expression and nuclear translocation of XBP1S in mesenchymal stem cells (MSCs) were induced by differentiation medium in vitro. Diminution of Xbp1 expression impaired the odontogenic differentiation potential of MSCs. The further integration of ATAC-seq and RNA-seq identified Hspa9 as a direct downstream target, an essential mitochondrial chaperonin gene that modulated mitochondrial homeostasis. The amelioration of mitochondrial dysfunction rescued the impaired odontogenic differentiation potential of MSCs caused by the diminution of Xbp1. Furthermore, the overexpression of Hspa9 rescued Xbp1-deficient defects in odontoblastic differentiation. Our study illustrates the crucial role of Xbp1 in odontoblastic differentiation via modulating mitochondrial homeostasis and brings evidence to the therapy of mitochondrial diseases caused by genetic defects.


Extracellular Matrix Proteins , Mesenchymal Stem Cells , Extracellular Matrix Proteins/metabolism , Cell Differentiation , Transcription Factors/genetics , Mesenchymal Stem Cells/metabolism , Homeostasis
...